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1. Introduction

There have been some longstanding, unsolved problems when it comes to realistic model

building within the framework of Calabi-Yau (CY) compactifications of superstring theo-

ries, namely

• supersymmetry breaking,

• the moduli problem,

• a small, but nonvanishing cosmological constant Λ > 0 [1 – 3], indicating an asymp-

totic de Sitter (dS) type universe. Moreover, w < −1
3 indicates an accelerated ex-

pansion.

Especially the last point seems to pose a serious challenge for string theory, because (eter-

nal) de Sitter type universes, due to the existence of event horizons, are believed to neces-

sitate a finite number of physical degrees of freedom (resulting in finite dimensional Hilbert

spaces) [4, 5], which appears impossible to reconcile with string theory. Moreover, compact-

ifications of string theory on Calabi-Yau 3-folds to four spacetime dimensions generically

produce a large number of massless moduli (scalar fields) which we do not observe in nature.

However, a recent proposal by Kachru, Kallosh, Linde and Trivedi (KKLT) [6] manages to

address all of the above stated difficulties at once. The authors outline a way to produce a

nontrivial (scalar) potential for all CY moduli, resulting in supersymmetric anti-de Sitter

(AdS) vacua in which all moduli are stabilized. To achieve this, the authors start with
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a warped compactification of a type IIB orientifold with background fluxes as discussed

in [7]. There it was shown that by turning on appropriate R-R and NS-NS 3-form fluxes

F̂(3) and Ĥ(3), it is possible to fix both the complex structure moduli zα and the axiodila-

ton τ := C(0) + ie−φ̂. However, owing to the fact that the flux-induced superpotential1

W IIB
0 =

∫
CY3

Ĝ(3) ∧ Ω [8] does not depend on the Kähler moduli of the compactification

manifold, one is forced to include nonperturbative corrections to W in order to generate

a potential for those moduli. KKLT argue that this can be achieved generically in their

class of models by one of two effects: Euclidean D3-brane instantons wrapping divisors of

arithmetic genus equal to one [9] or gaugino condensation in the gauge theory living on a

stack of coinciding D7-branes wrapping 4-cycles of the internal CY [10, 11]. Both effects

can be shown to lead to stabilization of the remaining Kähler moduli. As a matter of

fact, the condition on the arithmetic genus of the divisors can be relaxed in the presence

of fluxes, as was discovered recently by several authors (see e.g. [12]). In the final step of

the KKLT construction it is argued that by adding D3-branes to the setup in a suitable

fashion, it is possible to break supersymmetry in such a way that the vacuum is lifted to a

dS vacuum with a discretely tunable cosmological constant2. It is, however, important to

note that the dS vacua in question are only local minima of the N = 1 supergravity scalar

potential for the relevant moduli. There always exists a global minimum, the Dine-Seiberg

runaway vacuum in the large volume or decompactification limit. Therefore the dS vacua

are only metastable, albeit at cosmological time scales, thus evading the above mentioned

problems concerning eternal de Sitter spacetimes.

The program outlined by KKLT triggered a myriad of work within the framework

of type IIB orientifold compactifications [14 – 17]. Several important refinements to the

original KKLT proposal were made, e.g., V. Balasubramanian, F. Quevedo and collabora-

tors [18 – 20] realized that it is inconsistent (at least generically) to neglect the perturbative

α′-corrections to the Kähler potential. Stated differently, by including these corrections,

one can prove the existence of AdS vacua (even nonsupersymmetric ones) and the validity

of the construction for a much broader range of parameters as compared to the original

proposal without perturbative corrections.

In recent months, several authors have studied various aspects of the KKLT program

in the framework of type IIA orientifold compactifications [21 – 25]. One important differ-

ence compared to the type IIB case is that here, as we shall see below, the flux-induced

superpotential W IIA
0 contains contributions both from the complex structure as well as

the Kähler moduli. Therefore, one Kähler modulus of the untwisted sector gets projected

out by the orientifold 3 without having to consider nonperturbative instanton corrections.

Another worthwhile observation is that whereas in the type IIB scenario the fluxes are

highly constrained by the tadpole cancelation condition for the Ĉ(4)-field, this is not true

in the IIA setup, where some of the fluxes, namely F̂(2) and F̂(4), are left unaffected and

thus unconstrained by the Ĉ(7)-tadpole cancelation condition [21, 22, 24].

1Here we introduce the complexified 3-flux Ĝ(3) := F̂(3) − τĤ(3).
2This tuning can be achieved by turning on appropriate fluxes through cycles in the internal manifold.
3One can stabilize all the complex structure moduli but only one linear combination of the axions.
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In the present paper we work out and discuss in some detail the moduli stabilization

for a specific T 6/Z4 orientifold model. It has the prospect of yielding a viable stringy

realization of the ingredients needed for a realistic description of particle physics, namely

the correct particle spectrum (SM or MSSM) combined with desired cosmological features

(Λ > 0). These more advanced issues will be addressed in future research. In this paper

we find supersymmetric and nonsupersymmetric AdS vacua in which all moduli are stabi-

lized. Moreover we exhibit some vacua in which one Kähler modulus remains unfixed (flat

direction), although we have turned on generic fluxes.

The paper is organized as follows: We begin by introducing the basic setup and the

construction of the orientifold model in section 2. Section 3 contains a detailed discussion

of moduli stabilization via flux-induced potentials for the moduli of the untwisted sector.

We present two different approaches to this problem: First, starting from ten-dimensional

massive type IIA supergravity, we obtain the four-dimensional effective scalar potential

by Kaluza-Klein reduction. Second, we solve supersymmetric F-flatness conditions in the

language of four-dimensional N = 1 supergravity, yielding supersymmetric AdS vacua. We

extend our considerations to the twisted sector moduli fields in section 4, followed by some

conclusions and an outlook in section 5.

2. Basic setup

2.1 The T 6/Z4 orientifold

In this section, we outline the properties of the type IIA orientifold model under investi-

gation, namely an orientifolded T 6/Z4 orbifold that preserves N = 1 supersymmetry. A

detailled discussion of this model can be found in [28].

The T 6/Z4 orbifold. As a first step, we want to compactify type IIA string theory on an

T 6/Z4 orbifold background4. Let us start by describing the orbifold construction, follow-

ing [28, 29]. It is important to use a lattice for the T 6 that implements a crystallographic

action of the cyclic group. Therefore one chooses the root lattice of an appropriate Lie

algebra. In the
�

4 case under investigation the appropriate choice is SU(2)6. Unlike the

more complicated orbifolds with quotient group
�

N for N > 6 [31], in the case of
�

4, the

root lattice of the Lie algebra allows a choice of complex structure in such a way that the

torus factorizes as T 6 = T 2
(1)×T 2

(2)×T 2
(3). We parameterize it by three complex coordinates

zi, i ∈ {1, 2, 3}, together with the periodic identifications

zi ∼ zi + π2i−1 ∼ zi + π2i, i ∈ {1, 2, 3}, (2.1)

where the πk denote the fundamental 1-cycles of the three 2-tori. The
�

4 action on the

torus T 6 is given by

Θ : (z1, z2, z3) 7→ (αz1, αz2, α−2z3), (2.2)

4The T 6/Z4 orbifold is among those studied in [26, 27] and has been shown to admit consistent string

propagation, e.g., preserving modular invariance.
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sector: untwisted Θ,Θ3-twisted Θ2-twisted
∑

fixed points/type: — 16 Z4 12 Z2+ 4 Z4 (Z2) —

complex structure: 1 — 6+0 1+6

Kähler: 5 16 6+4 5+26

Table 1: List of complex structure and Kähler moduli.

where α = eiπ/2 = i is a fourth root of unity and Θ4 = �. This action preserves N = 2

supersymmetry in four dimensions, implying that the orbifold is actually a singular limit of

a Calabi-Yau 3-fold. The Hodge numbers are given by h1,1 = 31 and h2,1 = 7, yielding the

number of Kähler and complex structure moduli before the orientifold projection. Table 1

lists how the complex structure and Kähler moduli appear in the different sectors of the

orbifold.

The Euler characteristic turns out to be

χ(T 6/
�

4) = 2(h1,1 − h2,1) =
1

|�4|
∑

gh=hg

χ(g, h) = 48, (2.3)

where χ(g, h) denotes the Euler characteristic of the subspace invariant under both g and

h. |�4| = 4 is the order of the group. The sum runs over all pairs of elements of the

Abelian subgroup of the quotient group; here, since
�

4 is Abelian, the sum runs over the

sixteen pairings involving all four group elements5.

The orientifold model. As in [28, 29], we construct a T 6/
�

4 orientifold by modding out

by O = Ωp(−1)FLσ, where Ωp denotes worldsheet parity and (−1)FL stands for left-moving

fermion number. There are two distinct choices for the antiholomorphic6 involution σ on

each of the T 2. We choose7

σ : z1 7→ z̄1, (2.4)

σ : z2 7→ αz̄2,

σ : z3 7→ z̄3.

For the first two tori, the complex structure is fixed to be i, so zi = xi+iyi, i = 1, 2. On the

third torus the
�

4 action does not fix the complex structure z3 = x3 + iU2y
3. The tori and

our choices of fundamental 1-cycles are shown in figure 1. After the orientifold projection

we have an O6 orientifold plane wrapping the invariant special Lagrangian 3-cycles in

5The actions of Θ1, Θ2, Θ3 all yield 16 fixed points. However, four pairs of elements, namely those

involving combinations of Θ0 = � and Θ2 : (z1, z2, z3) 7→ (α2z1, α2z2, z3), leave at least one of the T 2

factors invariant, thus not contributing to the sum, as χ(T 6) = χ(T 2) = 0.
6In type IIA superstring theory, the involutive symmetry σ has to be chosen to be antiholomorphic, since

the left-moving space-time supercharge corresponds to the holomorphic 3-form, whereas the right-moving

space-time supercharge corresponds to the antiholomorphic 3-form. In the type IIB case both supercharges

are related to the holomorphic 3-form, thus necessitating a holomorphic involution. [33]
7This is the ABB model discussed in detail in [29].
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Figure 1: Tori of the ABB model.

projection fixed point set

O 2(π135 + π145)

OΘ 2π145 + 2π245 − 4π146 − 4π246

OΘ2 2(π235 − π245)

OΘ3 −2π135 + 2π235 + 4π136 − 4π236

Table 2: Invariant cycles in each sector of the ABB model.

T 6/Z4 and filling the four noncompact dimensions. For reference, we have summarized the

invariant cycles in each sector in table 2. There we employ the notation

πijk := πi ⊗ πj ⊗ πk, (2.5)

where π2i−1 and π2i denote the two fundamental 1-cycles of the three 2-tori T 2
i , i ∈ {1, 2, 3}

(see figure 1). The
�

4 action maps the cycles invariant under O and OΘ2 into each other

and likewise for the other two cycles. Therefore there are two invariant 3-cycles that are

both wrapped once by the O6-plane:

[a0] := 2(π135 + π145 + π235 − π245) (2.6)

[a1] := 4(π136 − π146 − π246 − π236) + 2(−π135 + π145 + π245 + π235) (2.7)

In addition, there will be exceptional 3-cycles related to the blow-ups of the fixed point

singularities (cf. section 4).

The O6-plane contributes to a Ĉ(7)-tadpole that has to be canceled either by introduc-

ing D6-branes or by turning on appropriate fluxes. This issue will be addressed in the next

section. It is important to note that both the O6-plane and the D6-branes can be chosen

to preserve/break the same supersymmetry. Thus, we are left with N = 1 supersymmetry

in four dimensions.
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2.2 Moduli and fluxes

Before embarking on the task of generating appropriate potentials by turning on fluxes, let

us collect the relevant moduli fields, forms and cycles appearing in our construction. We

start out by taking a closer look at the 3-cycles in the game. Since b3
untw. = 2+2h2,1

untw. = 4,

we expect four 3-cycles from the untwisted sector. This fits nicely with the observation

that the only (2, 1)-form invariant under the
�

4-action is dz1 ∧ dz2 ∧ dz3, so that the four

3-cycles are simply the duals of the holomorphic (3, 0)-form Ω, the antiholomorphic (0, 3)-

form Ω, the
�

4-invariant (2, 1)-form and the associated
�

4-invariant (1, 2)-form.

The 1-cycles yield the following behavior under the
�

4-action,

Θ1 : π1 7→ +π2, π3 7→ +π4, π5 7→ −π5, (2.8)

π2 7→ −π1, π4 7→ −π3, π6 7→ −π6,

Θ2 : π1 7→ −π1, π3 7→ −π3, π5 7→ +π5,

π2 7→ −π2, π4 7→ −π4, π6 7→ +π6,

Θ3 : π1 7→ −π2, π3 7→ −π4, π5 7→ −π5,

π2 7→ +π1, π4 7→ +π3, π6 7→ −π6,

leading to the following
�

4-invariant combination of 3-cycles

ρ1 := 2(π135 − π245), ρ̃1 := 2(π136 − π246), (2.9)

ρ2 := 2(π145 + π235), ρ̃2 := 2(π146 + π236).

Recall from table 1 that before the orientifold projection there are in addition 5 Kähler

moduli from the untwisted sector.

Next, we need to take a closer look at the moduli coming from the twisted sectors.

The Θ1- and the Θ3-twisted sectors feature 16
�

4 fixed points, giving rise to 16 additional

Kähler moduli. The Θ2 action leaves the third torus invariant, but acts nontrivially on

the first two. Of the sixteen
�

2 fixed points there are four that are also fixed points under

the
�

4-action. To each of the sixteen fixed points we associate an exceptional 2-cycle

eαβ , α, β ∈ {1, 2, 3, 4}, where α = 1, 4 denote the
�

4-invariant fixed points and α = 2, 3

denote the
�

2-invariant fixed points that get mapped into each other under Θ (cf. figure 2).

These give a total of 10 Kähler moduli. Certain linear combinations of these 2-cycles may

be combined with the fundamental 1-cycles π5,6 on the third torus to yield exceptional

3-cycles of topology S2 × S1. Demanding invariance of the exceptional 3-cycles under the

action of Θ and Θ3, which is given by 8

Θ(eαβ ⊗ π5,6) = Θ3(eαβ ⊗ π5,6) = −eη(α)η(β) ⊗ π5,6, (2.10)

with

η(1) = 1, η(4) = 4, η(2) = 3, η(3) = 2, (2.11)

8The two �2 fixed points are interchanged under Θ and Θ3, while the �4 fixed points are invariant

(cf. figure 2). The minus sign in (2.10) stems from the reflection of the fundamental 1-cycle of the third

torus.

– 6 –



J
H
E
P
0
7
(
2
0
0
6
)
0
2
7

Z  fixed point

Z  fixed point

4

2

1 2

3 4

T2 T2
(2)(1) , T2

(3)

Figure 2: Fixed points of the first two tori and the third torus.

one finds precisely twelve invariant combinations,

ε1 := (e12 − e13) ⊗ π5, ε̃1 := (e12 − e13) ⊗ π6, (2.12)

ε2 := (e42 − e43) ⊗ π5, ε̃2 := (e42 − e43) ⊗ π6,

ε3 := (e21 − e31) ⊗ π5, ε̃3 := (e21 − e31) ⊗ π6,

ε4 := (e24 − e34) ⊗ π5, ε̃4 := (e24 − e34) ⊗ π6,

ε5 := (e22 − e33) ⊗ π5, ε̃5 := (e22 − e33) ⊗ π6,

ε6 := (e23 − e32) ⊗ π5, ε̃6 := (e23 − e32) ⊗ π6.

Kaluza-Klein reduction of type IIA theory. The low energy limit of type IIA su-

perstring theory yields ten-dimensional type IIA supergravity. In order to cancel the Ĉ(7)-

tadpole, it turns out to be convenient for our purposes to allow for a nonzero F̂(0). This

effectively leads to massive type IIA SUGRA with mass m0 = F̂(0). The corresponding

action in the string frame is given by9

S
(10)
IIA,m0

=Skin + SCS + SO6 (2.13)

=
1

2κ2
10

∫
d10x

√
−ĝ

(
e−2φ̂(R̂ + 4∂µφ̂∂µφ̂ − 1

2
|Ĥtot

3 |2) − (|F̂2|2 + |F̂4|2 + m2
0)

)

− 1

2κ2
10

∫ (
B̂(2) ∧ dĈ(3) ∧ dĈ(3) + 2B̂(2) ∧ dĈ(3) ∧ F̂ bg

(4) + Ĉ(3) ∧ Ĥbg
(3) ∧ dĈ(3)

−m0

3
B̂(2) ∧ B̂(2) ∧ B̂(2) ∧ dĈ(3) +

m2
0

20
B̂(2) ∧ B̂(2) ∧ B̂(2) ∧ B̂(2) ∧ B̂(2)

)

9We use hats to indicate that a field is ten-dimensional, following the conventions of [32]. Note also that

in our convention for the RR fields we have an additional factor of
√

2.
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+ 2µ6

∫

O6
d7ξe−φ̂

√
−ĝ − 2

√
2µ6

∫

O6
Ĉ(7),

where 2κ2
10 = (2π)7α′4, µ6 = (2π)−6α′−7/2 and the field strengths are given by

Ĥtot
(3) = dB̂(2) + Ĥbg

(3), (2.14a)

F̂(2) = dĈ(1) + m0B̂(2), (2.14b)

F̂(4) = dĈ(3) + F̂ bg
(4) − Ĉ(1) ∧ Ĥtot

(3) −
m0

2
B̂(2) ∧ B̂(2). (2.14c)

In the framework of standard Kaluza-Klein reduction, we expand the ten-dimensional gauge

potentials in terms of harmonic forms on the internal space Y = T 6/Z4, namely

Ĉ(1) = A0(x), B̂(2) = B(2)(x) + bA(x)ωA, A = 1, . . . , h(1,1), (2.15)

Ĉ(3) = C(3)(x) + AA(x) ∧ ωA + ξK(x)αK − ξ̃K(x)βK , K = 0, . . . , h(2,1).

where bA, ξK , ξ̃K are scalars in four dimensions, A0, AA are four-dimensional one-forms and

B(2) and C(3) are four-dimensional two- and three-forms respectively. The harmonic (1, 1)-

forms ωA form a basis of H(1,1)(Y ) with dual (2, 2)-forms ω̃A, which constitute a harmonic

basis of H(2,2)(Y ). Moreover, (αK , βL) ∈ H(3)(Y ) form a real, sympletic basis of harmonic

3-forms on Y with dimension h(3) = 2h(2,1) + 2. The intersection numbers are
∫

Y
αK ∧ βL = δL

K ,

∫

Y
ωA ∧ ω̃B = δB

A . (2.16)

Details of the orientifold projection. After modding out by the orientifold projection

O, we will be left with an N = 1 supergravity action. To determine the O-invariant states,

first recall that the ten-dimensional fields show the following behavior under (−1)FL and

Ωp (for a review, cf. [34]),

(−1)FL : odd : Ĉ(1), Ĉ(3), even : φ̂, ĝ, B̂(2), (2.17)

Ωp : odd : B̂(2), Ĉ(3), even : φ̂, ĝ, Ĉ(1). (2.18)

Accordingly, states that are O-invariant have to satisfy

σ∗φ̂ = +φ̂, σ∗ĝ = +ĝ, σ∗B̂(2) = −B̂(2), (2.19)

σ∗Ĉ(1) = −Ĉ(1), σ∗Ĉ(3) = +Ĉ(3).

Therefore we want to investigate how the cohomology groups split into even and odd

subspaces under the antiholomorphic involution σ,

Hp(Y ) = Hp
+(Y ) ⊕ Hp

−(Y ). (2.20)

The relevant cohomology groups together with their basis elements are summarized in

table 3.10 Let us begin by studying the behavior of the (1, 1)-forms in the untwisted sector.

10Note that the volume form on T 6/Z4 is odd under σ.
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cohomology group H
(1,1)
+ H

(1,1)
− H

(2,2)
+ H

(2,2)
− H

(3)
+ H

(3)
−

dimension h
(1,1)
+ h

(1,1)
− h

(1,1)
− h

(1,1)
+ h(2,1) + 1 h(2,1) + 1

basis ωα ωa ω̃a ω̃α aK bK

Table 3: Cohomology groups and their basis elements.

We will discuss the twisted sector moduli in section 4. There are four σ-odd Z4-invariant

(unnormalized) (1, 1)-forms, namely

σ : (dzi ∧ dzi) 7→ −(dzi ∧ dzi), i = 1, 2, 3, (2.21a)

σ : (dz1 ∧ dz2 + eiπ/2dz1 ∧ dz2) 7→ −(dz1 ∧ dz2 + eiπ/2dz1 ∧ dz2) (2.21b)

and one even (1, 1)-form,

σ : (dz1 ∧ dz2 − eiπ/2dz1 ∧ dz2) 7→ +(dz1 ∧ dz2 − eiπ/2dz1 ∧ dz2). (2.22)

Consequently, h
(1,1)
+,untw. = 1 and h

(1,1)
−,untw. = 4. Moreover, we can combine the Z4-invariant

(2, 1)-form and the corresponding (1, 2)-form into an even and an odd combination under

σ,

σ : (dz1 ∧ dz2 ∧ dz3 ± idz1 ∧ dz2 ∧ dz3) 7→ ±(dz1 ∧ dz2 ∧ dz3 ± idz1 ∧ dz2 ∧ dz3). (2.23)

Fluxes. The following background fluxes of the NS-NS and R-R field strengths are con-

sistent with the orientifold projection and may thus be turned on:

F̂ bg
0 = m0, F̂ bg

2 = −maωa, F̂ bg
4 = eaω̃

a, Ĥbg
3 = −pKbK , (2.24)

where we have taken into account the appropriate behavior of the fluxes under σ. The

indices a = 1, . . . , h
(1,1)
−,untw. = 4 and K = 0, . . . , h

(2,1)
untw. = 1 label the basis elements of the

cohomology groups, as given in table 3, but are restricted to the untwisted sector. More

explicitly, we have

ω1 =
(κ

2

)1/3
idz1 ∧ dz1, (2.25a)

ω2 =
(κ

2

)1/3
idz2 ∧ dz2, (2.25b)

ω3 =
(κ

2

)1/3 1

U2
idz3 ∧ dz3, (2.25c)

ω4 =
(κ

2

)1/3 (1 − i)

2
(dz1 ∧ dz2 − idz2 ∧ dz1), (2.25d)

and in addition,

ω̃1 =

(
1

(4κ)1/3U2

)
(idz2 ∧ dz2) ∧ (idz3 ∧ dz3), (2.26a)

ω̃2 =

(
1

(4κ)1/3U2

)
(idz3 ∧ dz3) ∧ (idz1 ∧ dz1), (2.26b)
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ω̃3 =

(
1

(4κ)1/3

)
(idz1 ∧ dz1) ∧ (idz2 ∧ dz2), (2.26c)

ω̃4 = −
(

1

(4κ)1/3U2

)
(1 − i)

2
(dz1 ∧ dz2 − idz2 ∧ dz1) ∧ (idz3 ∧ dz3), (2.26d)

such that ∫

Y
ω1 ∧ ω2 ∧ ω3 = −

∫

Y
ω3 ∧ ω4 ∧ ω4 = κ (2.27)

and ∫

Y
ωa ∧ ω̃b = δb

a. (2.28)

We normalize the volume form such that

i

∫

Y
Ω ∧ Ω = 1 =⇒ Ω =

(1 − i)

2
√

U2
dz1 ∧ dz2 ∧ dz3, (2.29)

and choose our three forms to be

a0 =
1

2
(dx1 ∧ dx2 − dy1 ∧ dy2 + dx1 ∧ dy2 + dy1 ∧ dx2) ∧ dx3, (2.30a)

a1 =
1

4
(dx1 ∧ dx2 − dy1 ∧ dy2 − dx1 ∧ dy2 − dy1 ∧ dx2) ∧ dy3, (2.30b)

b0 = 2(dx1 ∧ dx2 − dy1 ∧ dy2 + dx1 ∧ dy2 + dy1 ∧ dx2) ∧ dy3, (2.30c)

b1 = −4(dx1 ∧ dx2 − dy1 ∧ dy2 − dx1 ∧ dy2 − dy1 ∧ dx2) ∧ dx3. (2.30d)

Ω is given in this basis by

Ω =
1√
U2

a0 + 2
√

U2 a1 + i

√
U2

4
b0 + i

1

8
√

U2
b1. (2.31)

The mixed-index part of the metric will be parameterized in the following way,

gij̄ =




γ1 γ4 + iγ5 0

γ4 − iγ5 γ2 0

0 0 γ3


 . (2.32)

Taking into account the action of σ on g, one finds that g12̄ = ig21̄, so that γ4 = γ5.

Therefore, one Kähler modulus of the untwisted sector gets projected by the orientifold.11

3. Moduli stabilization

We are now ready to calculate the potential for the various moduli fields discussed above.

In the next subsection, we will directly calculate the potential from the (massive) IIA

supergravity action compactified on the orientifold in the presence of fluxes. Moreover, we

will derive several conditions, such as a tadpole cancelation condition and another condition

on the 3-form axions ξ0 and ξ1 which are related to the complex structure.

11Note that there is a non-vanishing metric component of pure type, namely

δg3̄3̄ = − 1

||Ω||2 Ω3̄
kl

(χK)kl3̄(z̃
K), (2.33)

corresponding to the deformations of the complex structure. In our conventions, the untwisted complex

structure modulus U2 also shows up in the effective potential for the untwisted Kähler moduli below.
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3.1 Dimensional (Kaluza-Klein) reduction from 10 to 4 dimensions

Again, we shall first restrict ourselves to the untwisted sector of the orientifold model.

Quantization of fluxes. We impose the usual cohomological quantization condition for

a canonically normalized field strength,
∫

F̂p = 2κ2
10µ8−pfp = (2π)p−1α′(p−1)/2fp. (3.1)

Accordingly, we have12

m0 =
f0

2
√

2π
√

α′
, ma =

2π
√

α′f
(a)
2√

2
, pK = (2π)2α′h

(K)
3 , ea =

κ1/3

√
2

(2π
√

α′)3f
(a)
4 , (3.2)

where f0, f
(a)
2 , h

(K)
3 , f

(a)
4 ∈ Z.

Tadpole cancelation conditions. The O6-plane will generate a tadpole for the Ĉ7-

potential, which we want to cancel solely by background fluxes without adding D6-branes.

Noting that ∗F̂(2) = dĈ7 − Ĉ5 ∧ Ĥ3 − m0
24 B̂2 ∧ B̂2 ∧ B̂2 ∧ B̂2 contains Ĉ7, the integrated

equations of motion for the Ĉ7-potential yield
∫

dF̂(2) =

∫
m0Ĥ

bg
3

!
= 2

√
2κ2

10µ6 = 2(
√

2π
√

α′). (3.3)

The O6-plane wraps each of the cycles [a0] = (ρ1 + ρ2) and [a1] = (2(ρ̃1 − ρ̃2) + ρ2 − ρ1)

once. Thus we have to integrate (3.3) over [bK ],K = 0, 1 leading to

m0pK = −2(
√

2π
√

α′), K = 0, 1. (3.4)

Taking into account the quantization condition (3.1), we arrive at the tadpole cancelation

conditions

m0p0 = m0p1 = (
√

2π
√

α′)f0h
(K)
3 = −2(

√
2π

√
α′) (3.5)

⇒ (f0, h
(K)
3 ) = ±(2,−1) or ± (1,−2).

For later convenience we define p ≡ p0 = p1.

Potential for the untwisted complex structure axion. We will begin our discus-

sion of the complex structure moduli by considering the associated axions first. A more

detailed examination of the complex structure deformations will be carried out in the next

subsection. It actually turns out that the contribution to the superpotential coming from

Ĥbg
(3) fixes the real part of the complex structure hypermultiplet (namely the geometric

complex structure moduli), while it leaves the imaginary part (the axions) unfixed. After

the orientifold projection, the remaining axionic modes are13

Ĉ(3) = ξ0a0 + ξ1a1, (3.6)

12Note the additional factor of
√

2 for the RR fields in our conventions.
13We have chosen a symplectic basis for H(3)(Y ) such that all the aK are σ-even and all the bK are σ-odd.
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noting that Ĉ(3) has to be even under the involution σ in our construction. The discussion

here mostly parallels [22]. The RR field Ĉ(3) only appears in the Chern-Simons piece of

the massive IIA SUGRA action ( 2.13). It is important to notice that Ĉ(3) ∧ Ĥbg
(3) ∧ dĈ(3)

is nonvanishing only if dĈ(3) is polarized in the noncompact directions. Since it does not

contain physical degrees of freedom, we will treat it as a Lagrange multiplier F0 := dC(3).

Plugging its equation of motion back into the action yields

SF0 = − 1

2κ2
10

∫
F0 ∧ ∗F0. (3.7)

Minimizing this contribution to the potential is tantamount to setting F0 = 0. Doing this

and integrating over Y results in an equation involving the 3-form axions, namely

p0ξ
0 + p1ξ

1 = e0 + eaba − κm0b3(b1b2 −
b2
4

2
), (3.8)

with the definition e0 :=
∫

F̂ bg
(6). This means that only one linear combination of the axions

is fixed while there is another (independent) one that remains unfixed. This is consistent

with the results obtained below from analyzing the superpotential. One could either try

to stabilize the remaining axion by introducing nonperturbative effects such as Euclidean

D2-instantons or by using the unfixed axion(s) to give mass to (potentially anomalous)

U(1) brane fields via the Stückelberg mechanism [24].

Equations of motions for the ba. For simplicity we will set14 F̂ bg
2 = 0. Since Ĉ1 has

no zero modes, the contributions from the |F̂2|2 and |F̂4|2 terms in the action are at least

quadratic in the ba. Since the Chern-Simons term linear in B̂2 has been taken into account

above, we find that the action contains no terms linear in ba. Therefore there is a solution

with ba = 0,∀a. Since we will find supersymmetric and non-supersymmetric vacua some of

these solutions might have instabilities. We will further investigate this at the end of this

section.

Flux generated potential for the untwisted Kähler and complex structure mod-

uli. In this section we will stabilize the remaining untwisted moduli. We will work in the

four dimensional Einstein frame, so we define g(4)µν = eφ̂√
vol(6)

gE
(4)µν . The effective potential

is defined as

S =
1

κ2
10

∫
d4x

√
−gE

(4)(−Veff). (3.9)

For ba = 0 and the ξK satisfying their equation of motion we only get contributions from

the terms |Ĥtot
3 |2, |F̂4|2,m2

0 and the O6 Born-Infeld piece. They are

Veff =
e2φ̂

vol2(6)
p2(

1

U2
+ 4U2) +

e4φ̂

2vol3(6)

×
[

3∑

i=1

e2
i v

2
i + e2

4(v1v2 +
v2
4

2
) + e1e2v

2
4 + 2e4v4(e1v1 + e2v2)

]
(3.10)

14Solutions with F̂ bg
2 6= 0 have qualitatively the same behavior as the F̂ bg

2 = 0 solution as will be shown

later.

– 12 –



J
H
E
P
0
7
(
2
0
0
6
)
0
2
7

+
m2

0

2

e4φ̂

vol(6)
− 2|m0p|

e3φ̂

vol
3/2
(6)

(
1√
U2

+ 2
√

U2

)
, (3.11)

where

v1 =
1

2

(
2

κ

)1/3

γ1, v2 =
1

2

(
2

κ

)1/3

γ2,

v3 =
1

2

(
2

κ

)1/3

U2 γ3, v4 = −
(

2

κ

)1/3

γ4,

vol(6) =

∫

Y
dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3√g(6) = U2

γ3

(
γ1γ2 − 2γ2

4

)

4

= κv3

(
v1v2 −

v2
4

2

)
.

Extremizing the potential with respect to the complex structure U2 fixes it at

U2 =
1

2
. (3.12)

Now we solve

va
∂V

∂va
+

7

4

∂V

∂φ̂
= 0, (3.13)

and find

eφ̂
√

vol(6) =
5√
2

∣∣∣∣
p

m0

∣∣∣∣ . (3.14)

This is (almost) fixed by the tadpole cancelation conditions, cf. equation (3.5) above.

This condition ensures that, for minima of the potential, the string coupling automatically

becomes small if we tune the fluxes such that the internal volume becomes large enough to

trust the supergravity approximation we are using. Relation (3.14) can be used to eliminate

the dilaton dependence of the potential. Once the minima have been found, said relation

fixes the dilaton w.r.t. a specific set of fluxes. The potential simplifies to

Veff =
25

8

p4

m2
0

( −39

vol3(6)
+

25

m2
0 vol5(6)

[ 3∑

i=1

e2
i v

2
i + e2

4(v1v2 +
v2
4

2
) + e1e2v

2
4

+ 2e4v4(e1v1 + e2v2)

])
.

It now only depends on the Kähler moduli v1, v2, v3, v4. Extremizing with respect to all of

the Kähler moduli leads to five sets of solutions. The first is

v1 = ±e2

√
10

3

√∣∣∣∣
e3

κm0(2e1e2 − e2
4)

∣∣∣∣, (3.15)

v2 = ±e1

√
10

3

√∣∣∣∣
e3

κm0(2e1e2 − e2
4)

∣∣∣∣,

v3 =

√
5

6

√∣∣∣∣
2e1e2 − e2

4

κm0e3

∣∣∣∣,
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v4 = ∓e4

√
10

3

√∣∣∣∣
e3

κm0(2e1e2 − e2
4)

∣∣∣∣.

As we will see below this solution encompasses the supersymmetric solution obtained from

minimizing the potential of the 4-d SUGRA action. To allow for a geometrical interpreta-

tion of the solution we have to demand that the volume vol(6) and v3 the area of the third

torus are bigger than zero. This implies that (2e1e2−e2
4) > 0 which requires sign[e1e2] > 0.

The volume is

vol(6) =
5

3

√
5

6

√∣∣∣∣
e3(2e1e2 − e2

4)

κm3
0

∣∣∣∣. (3.16)

It can be made parametrically large by tuning the fluxes to large values. The string coupling

is determined to be

gs = eφ̂ = |p|
(

135

2

∣∣∣∣
κ

m0e3(2e1e2 − e2
4)

∣∣∣∣
)1/4

. (3.17)

Thus, there is a (countably) infinite number of vacua with small string coupling and large

volume.15

The value of the potential at the minimum is

Vmin = −243

25

√
6

5

√∣∣∣∣
κ3m5

0

(e3(2e1e2 − e2
4))

3

∣∣∣∣ p4, (3.18)

which is always negative so that the vacua are anti-de-Sitter.

The second set of solutions is

v1 = ±e4

√
5

3

√∣∣∣∣
e2e3

κm0e1(2e1e2 − e2
4)

∣∣∣∣, (3.19)

v2 = ±e4

√
5

3

√∣∣∣∣
e1e3

κm0e2(2e1e2 − e2
4)

∣∣∣∣,

v3 =

√
5

6

√∣∣∣∣
2e1e2 − e2

4

κm0e3

∣∣∣∣,

v4 = ∓2

√
5

3

√∣∣∣∣
e1e2e3

κm0(2e1e2 − e2
4)

∣∣∣∣.

For this case we have to demand that (2e1e2 − e2
4) < 0 and sign[e1e2] > 0. The volume,

the string coupling and the potential at the minimum are the same as above. This is also

the case for all the other solutions.

The next set of solutions has v4 fixed at zero

v1 = ±
√

5

3

√∣∣∣∣
e2e3

κm0e1

∣∣∣∣, (3.20)

15If we set for example e1 = e2 = e3 = e4 ≡ e → ∞, we have vol ∼ e3/2, eφ̂ ∼ e−3/4.
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v2 = ±
√

5

3

√∣∣∣∣
e1e3

κm0e2

∣∣∣∣,

v3 =

√
5

6

√∣∣∣∣
2e1e2 − e2

4

κm0e3

∣∣∣∣,

v4 = 0.

It requires sign[e1e2] < 0 which implies (2e1e2 − e2
4) < 0.

We furthermore find solutions in which one of the Kähler moduli is unstabilized

v1 =
1

e2
1

(
(−e1e2 + e2

4)v2 ± e4

√

|2e1e2 − e2
4|v2

2 −
∣∣∣∣
10

3

e2
1e3

κm0

∣∣∣∣

)
, (3.21)

v2 = unfixed,

v3 =

√
5

6

√∣∣∣∣
2e1e2 − e2

4

κm0e3

∣∣∣∣,

v4 =
1

e1

(
(−e4v2 ∓

√

|2e1e2 − e2
4|v2

2 −
∣∣∣∣
10

3

e2
1e3

κm0

∣∣∣∣

)
.

These solutions require (2e1e2 − e2
4) < 0 and v2

2 >
∣∣∣ 10

3
e2
1e3

κm0(2e1e2−e2
4)

∣∣∣. Since the action is

invariant under the simultaneous exchange of e1 ↔ e2 and v1 ↔ v2, we have corresponding

solutions in which v1 is unfixed.

Although we have turned on the most generic fluxes compatible with the orbifold and

orientifold projection, we found solutions that have one unstabilized geometric modulus.

As we will see below these solutions are not supersymmetric.

Stability analysis for the ba. Since we have found vacua that are non-supersymmetric,

we have to check that our ba = 0 solution is in fact stable. To do this we consider the

terms quadratic in ba and ξK 16. We find

Saxion =
1

2κ2
10

∫
d4x

√
−gE

4 (3.22)

×
[
− 1

2vol(6)
∂µba∂µbb

∫

Y
(ωa ∧ ∗6 ωb) − e2D∂µξK∂µξL

∫

Y
(aK ∧ ∗6 aL)

− e4D

(
m2

0b
abb

∫

Y
(ωa ∧ ∗6 ωb) − m0b

abbec

∫

Y
(ωa ∧ ωb ∧ ∗6 ω̃c)

+
(−pKξK + eab

a)2

vol(6)

)]
,

where we defined the four dimensional dilation as eD = eφ̂√
vol(6)

. Now one has to diagonalize

the kinetic energy terms and calculate the mass-squared matrix (Hessian) for each of the

solutions described above. To carry out the calculations in full generality is rather tedious.

16Remember that (3.8) implies that there is a mixing between the ba and ξK .
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From the action we see that the result will depend on the explicit choices for the fluxes

m0 and ea. We have calculated the mass-squared matrix for simple sets of fluxes for all

of our vacua. In each case, we obtain positive mass eigenvalues with the exception of one

zero eigenvalue corresponding to the unstabilized axion ξ0 − ξ1 (cf. (3.8)). Thus, there

exists a stable solution for all vacua (with large fluxes). In conclusion, we see that the

solution corresponding to ba = 0, ∀a, is a stable minimum of the effective four-dimensional

potential, at least for simple choices of the fluxes.

3.2 Effective N = 1 SUGRA in D = 4

In this subsection we will analyze the problem from the point of view of the effective N = 1

SUGRA theory in four dimensions. One of the virtues of working in this framework is that

the untwisted and the twisted moduli can be treated on equal footing. As pointed out

in [22], another advantage lies in the fact that this type of analysis can be used for general

backgrounds since e.g., backreaction and worldsheet instanton corrections are naturally de-

scribed in terms of the four-dimensional effective theory, whereas they cannot be described

in terms of ten-dimensional supergravity. Based on the flux-generated superpotential, as

worked out by Grimm and Louis [32] (see also [34]), we will analyze the F-flatness condi-

tions DIW = 0, where I runs over all moduli fields and DI = ∂I + (∂IK) is the Kähler

covariant derivative. Solutions to these equations correspond to supersymmetric minima

of the scalar potential,

V = eK




∑

IJ̄

GIJ̄DIWDJW − 3|W |2

 + m0e

KQ
ImW Q, (3.23)

namely

DIW = 0 ⇒ dV = 0. (3.24)

The opposite direction is not true. The structure of the Kähler potential K = KK + KQ

and the superpotential W = W K + W Q will be discussed below.

N = 2 SUGRA in D = 4. The dimensional reduction of (massive) type IIA supergrav-

ity from D = 10 to D = 4 on a Calabi-Yau manifold gives rise to N = 2 supergravity in

D = 4. The existence of one covariantly constant spinor on the internal CY (with SU(3)

holonomy) ensures that there are two four-dimensional SUSY parameters; the compactifi-

cation therefore preserves eight supercharges, hence N = 2 in D = 4. In the presence of

fluxes, the resulting effective theory in four dimensions is gauged, i.e., the hypermultiplets

are charged under some of the vectormultiplets. For this to be consistent, the metric on

the scalar manifold coordinatized by the hypermultiplets, which is in fact a quaternionic

manifold, must possess isometries that in turn can be gauged. Table 4 lists the bosonic

components of all N = 2 multiplets. There are massless modes coming from deformations

of the metric g of the CY manifold that respect the Ricci flatness condition Rmn = 0. This

forces δg to satisfy the Lichnerowicz equation, whose solutions in our case can be identified

with harmonic (1,1)- and (2,1)-forms on Y , corresponding to Kähler structure and complex

structure deformations, respectively.
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gravity multiplet 1 (gµν , A0)

vectormultiplets h(1,1) (AA, vA, bA)

hypermultiplets h(2,1) (zK , ξK , ξ̃K)

tensor multiplet 1 (B(2), φ̂, ξ0, ξ̃0)

Table 4: Bosonic part of the N = 2 multiplets for Type IIA SUGRA on a CY3.

Kähler moduli space. Deformations of the Kähler form can be expanded in a basis of

harmonic (1,1)-forms,

gij̄ + δgij̄ = −iJij̄ = −ivA(ωA)ij̄, A = 1, . . . , h(1,1). (3.25)

These deformations can be supplemented by the h(1,1) real scalar fields bA(x) from the

expansion of the B-field, yielding complex fields

tA = bA + ivA, (3.26)

that parametrize the complexified Kähler cone. The moduli space of the complexified

Kähler structure deformations Mks is a special Kähler manifold which can be seen by

noting that the metric is given by

GAB =
3

2κ

∫

Y
ωA ∧ ∗ωB = −3

2

(
κAB

κ
− 3

2

κAκB

κ2

)
= ∂tA∂tBKks, (3.27)

where the intersection numbers are defined as follows

κ =

∫

Y
J ∧ J ∧ J = κABCvAvBvC , κA =

∫

Y
ωA ∧ J ∧ J = κABCvBvC ,

κAB =

∫

Y
ωA ∧ ωB ∧ J = κABCvC , κABC =

∫

Y
ωA ∧ ωB ∧ ωC .

The Kähler potential for the Kähler structure deformations,

Kks = − ln

(
i

6
κABC(t − t̄)A(t − t̄)B(t − t̄)C

)
= − ln

4

3
κ, (3.28)

can be derived from a single holomorphic prepotential G(t) = −1
6κABCtAtBtC .

Complex structure moduli space. Complex structure deformations are associated

with harmonic (1,2)-forms and are parametrized by complex fields z̃K , K = 1, . . . , h(2,1),

in the following way,

δgij =
i

||Ω||2 z̃
K

(χK)īij̄Ω
īj̄

j, (3.29)

where the χK form a harmonic basis of H(2,1)(Y ) and ||Ω||2 = 1
3!ΩijkΩ

ijk. The metric on

the complex structure moduli space Mcs is given by

GKL̄ = −
∫
Y χK ∧ χL∫

Y Ω ∧ Ω
. (3.30)
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Kodaira’s formula connects the χK to the variation of the harmonic (3,0)-form via

χK(z̃, z̃) = ∂z̃K Ω(z̃) + Ω(z̃)∂z̃K Kcs, (3.31)

where

Kcs(z̃, z̃) = − ln

[
i

∫

Y
Ω ∧ Ω

]
= − ln i

[
Z

KFK − ZKFK

]
. (3.32)

Note that GKL̄ = ∂z̃K ∂z̃L̄Kcs, thus proving that that Mcs is a Kähler manifold. The

holomorphic periods ZK ,FK are the expansion coefficients of

Ω = ZKαK −FKβK , (3.33)

so that we have

ZK =

∫

Y
Ω ∧ βK , FK =

∫

Y
Ω ∧ αK . (3.34)

In fact, Ω is only defined up to a complex rescaling with a holomorphic function which

changes the Kähler potential by a Kähler transformation. This symmetry can be used to

fix a Kähler gauge, in which Z0 = 1. The remaining periods can be identified with the

h(2,1) complex structure deformations

z̃K =
ZK

Z0
. (3.35)

Moreover, we find that there exists a prepotential of which FK is the first derivative,

F = 1
2ZKFK . This means that the metric GKL̄ is completely determined by F . Therefore

Mcs is in fact a special Kähler manifold.

Supplementing the complex structure deformations z̃K with the corresponding axions

ξK and ξ̃K from the RR 3-form Ĉ3 can be shown to result in a special quaternionic structure

of the resulting moduli space. We will refer to this larger manifold, spanned by the scalars

in the hypermultiplets, as MQ. In the next section we will use the fact that MQ contains

the special Kähler submanifold Mcs spanned by the complex structure deformations.

Orientifold projection. As already mentioned above, the cohomology groups split into

even and odd parts under the antiholomorphic involution σ (cf. (2.20)). The involution

must act as [35]

σ∗J = −J, σ∗Ω = e2iθΩ. (3.36)

The fixed loci of σ (which the O6-plane wraps) are special Lagrangian (sLag) 3-cycles Σn

fulfilling

J
∣∣∣
Σn

= 0, Im(e−iθΩ)
∣∣∣
Σn

= 0. (3.37)

Together with the conditions (2.19) we are left with

Jc := B + iJ =

h
(1,1)
−∑

a=1

taωa. (3.38)
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multiplets multiplicity bosonic components

gravity multiplet 1 gµν

vector multiplets h
(1,1)
+ Aα

chiral multiplets h
(1,1)
− ta

chiral multiplets h(2,1) + 1 NK

Table 5: N = 1 multiplets after orientifold projection.

Thus, the orientifold projection reduces the Kähler moduli space to a subspace without

altering its complex structure and the Kähler potential is inherited directly from N = 2,

KK(ta) = − log(
4

3
κabcv

avbvc). (3.39)

For the holomorphic (3,0)-form, we get

Ω(z̃) = ZK(z̃)aK −FK(z̃)bK , (3.40)

where we have decomposed H(3)(Y ) = H
(3)
+ (Y ) ⊕ H

(3)
− (Y ) as indicated in table 3. As

remarked upon earlier, one can always perform a symplectic rotation on the resulting even

and odd bases such that all aK are even and all bK are odd. Note that the h
(1,1)
+ vector

multiplets do not contain any scalars and will therefore be disregarded. It is customary to

package the remaining degrees of freedom in the following way,

Ωc = Ĉ(3) + 2iRe(CΩ), (3.41)

where we have introduced the complex compensator C = re−iθ, where r = e−D+Kcs/2
. r

transforms oppositely to the holomorphic 3-form under holomorphic transformations so

as to render CΩ scale-invariant (the compensator replaces the irrelevant scale factor in

favor of the physical dilaton field D; for more details see [32, 35]). The field Ĉ(3) = ξKaK

comprises the surviving axionic modes. Finally, Ωc can be expanded in a basis of H
(3)
+ (Y ),

Ωc = 2NKaK , (3.42)

where

NK =
1

2

∫

Y
Ωc ∧ bK =

1

2
(ξK + 2iRe(CZK)). (3.43)

We have now reduced the number of moduli, while preserving the original N = 2 complex

structure. Table 5 shows the surviving N = 1 spectrum. The N = 1 Kähler potential is

given by

KQ = −2 log

(
2

∫
Re(CΩ) ∧ ∗Re(CΩ)

)
= 4D, (3.44)

where ∫
Re(CΩ) ∧ ∗Re(CΩ) = −Re(CZK)Im(CFK) =

e−2D

2
. (3.45)
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For the four dimensional dilaton we have

eD =
eφ̂

√
vol

=
√

8eφ̂+KK/2. (3.46)

In conclusion, we have seen that from each quaternionic hypermultiplet only the real part

of the complex structure modulus and one axion survives. The degrees of freedom in the

universal hypermultiplet are also cut in half, namely the dilaton φ̂ and the axion ξ0 survive.

3.3 Supersymmetric AdS vacua

It was demonstrated by Grimm and Louis [32] that dimensionally reducing massive type

IIA supergravity from 10 to 4 dimensions, while neglecting the backreaction of the fluxes

and other local sources on the geometry of the compactification manifold, leads to the

following scalar potential,

V = eKK+KQ




∑

I,J=ta,NK

GIJ̄DIWDJW − 3|W |2

 + m0e

KQ
ImW Q. (3.47)

The second term cancels with contributions from the O6-plane when the tadpole cancelation

condition (3.3) is satisfied. The superpotential is given by

W (ta, NK) = W Q(NK) + W K(ta), (3.48a)

W Q(NK) =

∫

Y
Ωc ∧ Ĥ(3) = −2pKNK = −pKξK − 2ipKRe(CZK), (3.48b)

W K(ta) =

∫

Y
e−Jc ∧ F̂ = e0 +

∫

Y
Jc ∧ F̂(4) −

1

2

∫

Y
Jc ∧ Jc ∧ F̂(2) −

m0

6

∫

Y
Jc ∧ Jc ∧ Jc

(3.48c)

= e0 + eat
a +

1

2
κabct

atbmc − m0

6
κabct

atbtc,

with the definition F̂ = m0− F̂ bg
(2)− F̂ bg

(4) + F̂ bg
(6) (cf. (2.24)). In the following sections we will

first analyze the equations for the moduli from the F-term conditions (3.24) in general and

then specialize to the case at hand, namely the T 6/Z4 orientifold. It is important to note

that these equations will be valid for all (untwisted and twisted) moduli. The discussion

closely follows the one in [22].

Complex structure equations. Solving for DNK W = 0 yields

pK + 2iW Im(CFK)e2D = 0. (3.49)

We shall study the real and imaginary parts of this equation separately. For the real part

one gets

pK − 2e2DIm(W )Im(CFK) = 0. (3.50)

We immediately learn from this equation that Im(W ) = 0 is incompatible with non-

vanishing Ĥbg
(3)-flux. Thus assuming Im(W ) 6= 0 we find that for each pKi = 0, we have

Im(CFKi) = 0. For pKj 6= 0, one finds

e−Kcs/2 pKj

Im(FKj )
= 2eDIm(W ) =: Q0, (3.51)
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thus fixing all geometric complex structure moduli (including the twisted ones, in our case

K = 0, . . . , h(2,1) = 7). As noted above, these equations are invariant under rescalings of

Ω and therefore do only depend on the h(2,1) inhomogeneous coordinates of Mcs, yielding

h(2,1) equations for the h(2,1) moduli. The dilaton will be stabilized at

e−φ̂ = 4
√

2eKK/2 Im(W )

Q0
, (3.52)

once complex structure and Kähler moduli are fixed.

Turning to the imaginary part of (3.49), we see that, due to the reality of the flux

coefficients pK , all K equations yield the same condition, namely (D and C = r are

real17.)

2e2DRe(W )Im(CFK) = 0 ⇒ Re(W ) = 0. (3.53)

Comparing to the definition of W , this indeed gives the same condition on the axions as

derived above (cf. (3.8)),

−pKξK + Re(W K) = 0, (3.54)

where we have now correctly considered all the axions, including those from the twisted

sectors. Another important observation can be made by multiplying (3.49) by Re(CZK)

and summing over K. The resulting equation reads

−iW = −pKRe(CZK) =
1

2
Im(W Q). (3.55)

Now since Re(W ) = 0 (cf. (3.53)), we find

−iW = Im(W K) + Im(W Q) =
1

2
Im(W Q) ⇒ Im(W Q) = −2 Im(W K). (3.56)

Therefore we can directly conclude that, provided the complex structure moduli are ‘on-

shell’ (satisfy their equations of motion), the vacuum superpotential can be given solely in

terms of the Kähler moduli, i.e.,

W (ta, NK) = −i Im(W K(ta)), (3.57)

thus effectively decoupling the Kähler sector from the complex structure sector.

Kähler structure equations. Let us now consider the Kähler sector in more detail.

The corresponding F-flatness conditions DtaW = 0 can be simplified making use of (3.57),

yielding

∂taW K − i∂taKKIm(W K) = 0. (3.58)

The imaginary parts of these equations produce conditions on the B-field parameters ba,

due to the fact that KK only depends on va = Imta, ensuring the reality of the second

term,

Im∂taW K = κabcvb(mc − m0bc) = 0. (3.59)

17We absorb θ in the holomorphic 3-form so that it satisfies σ∗Ω = Ω
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Therefore, bc is stabilized at bc = mc
m0

and vanishes when F̂ bg
(2) = 0, as claimed above. Of

course, this assumes m0 6= 0 and also non-vanishing vb and κabc. This leads us to the real

part of equations (3.58). We will show that these yield h
(1,1)
− equations to determine the

h
(1,1)
− moduli fields va or equivalently the γa used in the discussion earlier. They read

Re(∂taW K) + Im(∂taKK)Im(W K) = 0. (3.60)

More explicitly, we have

(4eam0 +2κapqm
pmq +3m2

0κapqv
pvq)κdef vdvevf +(6m0edv

d +3κdefvdmemf )κapqv
pvq = 0,

(3.61)

where we made frequent use of the equations for the ba parameters (see above). Multiplying

by va and summing over a leads to18

10m0edv
d + 5κdefvdmemf + 3m2

0κdefvdvevf = 0. (3.62)

This gives us one quadratic equation for every va, thus generically fixing all the Kähler

structure moduli, namely

10m0ea + 5κabcm
bmc + 3m2

0κabcv
bvc = 0. (3.63)

3.4 Application to the T 6/Z4 model

We start out by neglecting the twisted sector to show that we can reproduce the results

found above. Then we discuss the details of the twisted sector and derive the results for

all moduli.

Complex structure equations. Combining equations (3.51) and (2.31) we get19

− 4p0√
U2

= −8
√

U2p1 =: Q0. (3.64)

Assuming that we satisfy the tadpole cancelation conditions p0 = p1 ≡ p implies that the

complex structure is fixed at U2 = 1
2 . Since Q0 = −4

√
2p, the dilaton (cf. (3.52)) gets fixed

at

e−φ̂ = −
√

2

5

m0

p

√
vol(6). (3.65)

Note that this implies that sign[m0p] = −1.

The axions as derived above in (3.54) satisfy

p0ξ
0 + p1ξ

1 = e0 + eaba +
1

2
κabcma(bbbc − vbvc) −

m0

6
κabc(babbbc − 3bavbvc), (3.66)

which agrees with (3.8) for ba = ma
m0

.

Kähler structure equations. The equations (3.63) yield the following result for the

untwisted Kähler moduli,

v1 = ±
√

10

3

ê2

√
ê3√

κm0

√
−2ê1ê2 + ê2

4

,

18Solving equation (3.61) directly gives no solution with vol(6) 6= 0 and any of the va = 0.
19Recall that we have normalized Ω s.t. i

R

Ω ∧ Ω̄ = 1 so that Kcs = 0.
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v2 = ±
√

10

3

ê1

√
ê3√

κm0

√
−2ê1ê2 + ê2

4

,

v3 = ∓
√

5

6

√
−2ê1ê2 + ê2

4√
κm0

√
ê3

,

v4 = ∓
√

10

3

ê4

√
ê3√

κm0

√
−2ê1ê2 + ê2

4

,

where we have defined shifted fluxes invariant under the shifts of ta
20

êi ≡ ei +
κijkmjmk

2m0
. (3.67)

For this solution to have a geometrical interpretation, we have to demand that

sign [m0(−2ê1ê2 + ê2
4)] = sign [ê3], v3 > 0 and (2ê1ê2 − ê2

4) > 0. Comparing this with the

solution found in (3.15) we see that the additional constraint sign [m0e3] < 0 is required

for this solution to be supersymmetric.

To look at one explicit supersymmetric large volume and small string coupling example,

we use the flux quantization condition (3.1) to express the results in terms of flux integers.

Taking the limit f1 = f2 = f3 = f4 =: f À 1 leads to v1 = v2 = 2v3 = −v4 ∼ 72
κ1/3

α′√
|f0|

√
f .

Therefore, for the internal volume, the string coupling and the potential we get

vol(6) = κv3(v1v2 −
1

2
v4

2) ∼ 9 × 104 (α′)3

|f0|3/2
f3/2, (3.68)

gs = eφ̂ ∼ 4

∣∣∣∣∣
h

f
1/4
0

∣∣∣∣∣ f−3/4, (3.69)

Veff = −
√

3

10

243

1600π8

√∣∣∣∣
f5
0

f9

∣∣∣∣
h4

(α′)4
∼ −9 × 10−6

√∣∣f5
0

∣∣ h4

(α′)4
f−9/2. (3.70)

Gauge redundancies and counting of solutions. An interesting question is to ask

how many physically different solutions there are for different values of the Kähler axions

ba = ma
m0

. There are certain modular transformations of infinite order that act as shifts on

the axions and relate equivalent vacua [22]. A integer shift of the Kähler axions

ba → ba + ua, ua ∈ Z,∀a, (3.71)

corresponds to a shift of the F̂2 flux ma → ma + uam0. Now, since |m0| is (almost) fixed

by tadpole cancelation, we see that physically inequivalent choices for ma (and thus ba)

are defined modulo |m0|. Consequently, once m0 is fixed there are at most two different

inequivalent solutions for different values of the ba.

20Remember that there is a modular transformation that shifts the axions ba by one.
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sector: untwisted Θ,Θ3-twisted Θ2-twisted
∑

fixed points/type: — 16 Z4 12 Z2+ 4 Z4 (Z2) —

complex structure: 1 — 6+0 1+6

Kähler: 5 → 4(odd) 16 → 12 6 + 4 → 5 + 4 5 + 26 → 4 + 21

Table 6: List of moduli before and after orientifold projection.

Validity of approximations. In order for the low energy supergravity approximation

(leading order in α′) to be valid we have to make sure that the dimensionless expansion

parameter
α′

R2
∼ f−1/2 ¿ 1. (3.72)

Moreover, we also want the string coupling to be small enough to be in a perturbative

regime where we can safely neglect quantum (string loop) corrections. As we have observed

above, gs ∼ f−3/4. Therefore, by choosing f À 1 sufficiently large, we can ensure both

conditions simultaneously.

Another important issue is the backreaction of the fluxes on the geometry: Namely, in

the presence of background fluxes, the internal space is strictly speaking no longer a Calabi-

Yau orientifold. However, we want to make sure that the low energy spectrum we assumed

is still correct. For this to be true we must check that the mass scale of the (canonically

normalized) Kähler moduli is sufficiently small compared to the mass scale of the massive

Kaluza-Klein modes (mKK ∼ 1
R ) which we neglected. Performing the calculations in the

4D Einstein frame, we find

mṽa ∼ f−9/4 ¿ mKK ∼ f−1/4, (3.73)

where ṽa := δva
κ10<va> is normalized to give a canonical kinetic term in the Lagrangian.

Clearly, their masses will be much smaller than the Kaluza-Klein masses if we choose

f À 1 large.

4. Moduli stabilization in the twisted sectors

Fixed point structure and exceptional divisors. After having described the moduli

stabilization in the untwisted sector, it remains to investigate the stabilization of the blow-

up modes in the twisted sectors. Therefore let us briefly summarize the fixed point structure

of our orientifold model (table 6). The exceptional divisor can be determined as follows:

We start by modding out the T 6 = T 2
(1) × T 2

(2) × T 2
(3) by the Z2-action Θ2. This yields 16

singularities of type C2/Z2 × T 2
(3), whose blow-up is given by 16 CP 1 × T 2

(3). In a second

step, we mod out this blown-up space T̃ 6/Z2 by the Z2-action Θ. The CP 1s located at Z2

fixed points of the first two tori (cf. figure 2) get mapped into each other by Θ. Moreover,

the two Z2 fixed points of the second torus are identified under the orientifold involution

σ. This leaves us with 6 → 5 CP 1 × T 2
(3) that contribute to the twisted Kähler moduli.

Furthermore, the 6 CP 1s at the Z2 fixed points can be tensored with the two 1-cycles on
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divisor intersection type intersection number

T = CP 1 × T 2
(3) T ◦ T ◦ T 0

T = CP 1 × T 2
(3) T ◦ T ◦

[
U = T 2

(1) × T 2
(2)

]
β = −2

T ′ = CP 1 × CP 1 T ′ ◦ T ′ ◦ T ′ α = 8

Table 7: List of intersection numbers.

the third torus to yield 12 twisted 3-cycles of topology S2 ×S1 (which contribute 6 twisted

complex structure moduli). The 4 CP 1s sitting at the Z4 fixed points of the first two tori

remain invariant under this action and contribute 4 Kähler moduli (the sizes of the CP 1s)

to the twisted sectors. The 16 fixed loci of the Θ-action are CP 1 ×{point}, where {point}
denotes one of the fixed points of the third torus (cf. figure 2). Two of these get identified

by σ. Blowing-up results in 16 → 12 CP 1 ×CP 1, which give us the 12 Kähler moduli from

the Θ1,Θ3 sectors.

Intersection numbers. In order to solve the F-term conditions for the twisted Kähler

moduli, we need to calculate the various triple intersection numbers of the blow-up cycles.

The results are listed in table 7. These results can be used to extend the F-term equations

discussed above to include the twisted moduli.

It is important to note that there must be a hierarchy between the untwisted and

twisted Kähler moduli,

|m0| ¿ |eA| ¿ |ea|, (4.1)

in order to remain within the Kähler cone [22]. This is the reason why, although there are

non-vanishing intersection numbers linking the twisted sectors to the untwisted sector, the

values at which the untwisted Kähler moduli are stabilized will not significantly change

compared to the analysis of only the untwisted sector above.

Solutions to Kähler structure equations. For the ba we have the same solutions as

above ba = ma
m0

where a now runs from 0 to 26.

For the va we have to solve the equations (3.63). The solution is

v1 = ±
√

10

3

ê2

√
ê3

√
κm0

√
(−2ê1ê2 + ê2

4) − κ
β (ê2

5 + · · · + ê2
14)

, (4.2)

v2 = ±
√

10

3

ê1

√
ê3

√
κm0

√
(−2ê1ê2 + ê2

4) − κ
β (ê2

5 + · · · + ê2
14)

,

v3 = ∓
√

5

6

√
(−2ê1ê2 + ê2

4) − κ
β (ê2

5 + · · · + ê2
14)

√
κm0

√
ê3

,

v4 = ∓
√

10

3

ê4

√
ê3

√
κm0

√
(−2ê1ê2 + ê2

4) − κ
β (ê2

5 + · · · + ê2
14)

,

v5 = ±
√

10

3

ê5

√
κê3

√
m0 β

√
(−2ê1ê2 + ê2

4) − κ
β (ê2

5 + · · · + ê2
14)

,
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...

v14 = ±
√

10

3

ê14

√
κê3

√
m0 β

√
(−2ê1ê2 + ê2

4) − κ
β (ê2

5 + · · · + ê2
14)

,

v15 = ±
√

10

3

√
− ê15

αm0
,

...

v26 = ±
√

10

3

√
− ê26

αm0
.

As before, there are some additional conditions on the relative signs of the fluxes. To

ensure reality of the Kähler moduli, we need to have

sign [

(
ê3

m0((−2ê1ê2 + ê2
4) − κ

β (ê2
5 + · · · + ê2

14))

)
] > 0, (4.3)

sign [

(
êA

αm0

)
] < 0, ∀A = 15, . . . , 26. (4.4)

The volume and the string coupling constant are

vol(6) =
1

6
κabcvavbvc (4.5)

= v3(κv1v2 −
κ

2
v4

2 +
β

2

14∑

A=5

v2
A) +

α

6

26∑

A=15

v3
A (4.6)

=
5

3

√
5

6

√√√√
∣∣∣∣∣
ê3((2ê1ê2 − ê2

4) + κ
β (ê2

5 + · · · + ê2
14))

κm3
0

∣∣∣∣∣ +
α

6

26∑

A=15

(
− 10êA

3αm0

)3/2

, (4.7)

gs = eφ̂ = − 5√
2

p

m0

1√
vol(6)

. (4.8)

Due to the hierachy of fluxes mentioned above, the results for the untwisted sector do not

deviate substantially from those obtained without taking the twisted sector into account.

Twisted complex structure moduli. As we saw above, including the twisted sector

we now have 7 complex structure moduli to stabilize. The holomorphic 3-form is Ω(z̃) =

ZK(z̃)aK−FK(z̃)bK ,K = 0, . . . , 6. Equation ( 3.64) is still valid if we fix the normalization

of Ω such that i
∫

Ω ∧ Ω̄ = 1. For the twisted complex structure the pK ,K = 2, . . . , 6

are not constrained by the tadpole conditions. We can for example choose them to be

pK = 0,K = 2, . . . , 6 which would fix the corresponding complex structures Im(FK) = 0.

If we choose any of the pK ,K = 2, . . . , 6 to be non zero, the corresponding complex

structure is fixed as

Im(FK) = − pK

4
√

2 p
. (4.9)

The axions as derived above in (3.54) satisfy

7∑

h(2,1)=0

piξ
i = e0 +

eama

m0
+

κabcmambmc

3m2
0

, (4.10)
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where we have used ba = ma
m0

and a, b, c run from 1 to 26.

5. Conclusions and Outlook

In this note we have worked out the moduli stabilization for a specific type IIA orientifold

model, namely an orientifolded T 6/Z4 orbifold. The hope is that it will now be possible

to add certain ingredients (D6-branes) in order to build a (semi-)realistic model which

combines an MSSM(-like) particle content with realistic cosmological features, e.g., Λ >

0, without introducing new, unfixed moduli. This will be addressed in a forthcoming

paper [36]. A summary of what needs to be done is outlined in the following. We would

like to lift the stable AdS vacua derived above to meta-stable dS vacua in a controlled

way. There has been a renewed interest in recent literature in investigating the possibility

of D-term induced spontaneous supersymmetry breaking [40 – 43]. In analogy to the type

IIB case, where U(1) gauge field fluxes on D7-branes (magnetized D7-branes) wrapping

4-cycles in the internal space were proposed as a means to generate D-terms (and F-terms)

which spontaneously break N = 1 supersymmetry [37, 38], we propose to use gauge field

fluxes on D6-branes to induce similar terms in the type IIA setup [39, 40]. However,

no concrete, viable stringy realization of a D-term uplift to a meta-stable dS vacuum

has been found so far. According to [41], a necessary prerequisite for constructing D-

term contributions fully consistent with supergravity constraints is the existence of unfixed

axions that can participate in a supersymmetric Higgs mechanism (Stückelberg mechanism)

to form a massive U(1) vector. As we have seen above, such unfixed (complex structure)

axions exist in our model. Therefore, it would be interesting to see if we can consistently

apply D-term supersymmetry breaking in this class of models.

Moreover, we would like to incorporate stacks of intersecting D6-branes [44] so as to

build a (semi-)realistic particle spectrum featuring standard model or MSSM (-like) gauge

groups. It was demonstrated in [29] that the T 6/Z4 orientifold model under consideration

can give rise to interesting particle phenomenology, such as a 3-generation Pati-Salam

model, utilizing supersymmetric configurations of fractional D6-branes. However, since we

are working in the framework of massive type IIA theory, the presence of D8-branes renders

D6-brane configurations that preserve some supersymmetry much less generic (cf. [45]).

Therefore, a careful investigation of all the constraints is crucial to fully understand the

phenomenological viability of such models. This interesting topic will be the subject of

future study.
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